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Abstract
Robots in densely populated real-world environments frequently encounter constrained and clut-
tered situations such as passing through narrow doorways, hallways, and corridor intersections,
where conflicts over limited space result in collisions or deadlocks among the robots. Current
decentralized state-of-the-art optimization- and neural network-based approaches (i) are predom-
inantly designed for general open spaces, and (ii) are overly conservative, either guaranteeing
safety, or liveness, but not both. While some solutions rely on centralized conflict resolution, their
highly invasive trajectories make them impractical for real-world deployment. This paper intro-
duces LIVENET, a fully decentralized and robust neural network controller that enables human-
like yielding and passing, resulting in agile, non-conservative, deadlock-free, and safe, navigation
in congested, conflict-prone spaces. LIVENET is minimally invasive, without requiring inter-agent
communication or cooperative behavior. The key insight behind LIVENET is a unified CBF for-
mulation for simultaneous safety and liveness, which we integrate within a neural network for
robustness. We evaluated LIVENET in simulation and found that general multi-robot optimization-
and learning-based navigation methods fail to even reach the goal, and while methods designed spe-
cially for such environments do succeed, they are 10–20× slower, 4–5× more invasive, and much
less robust to variations in the scenario configuration such as changes in the start states and goal
states, among others. We open-source the LIVENET code at https://github.com/srikarg89/LiveNet.
Keywords: Multi-Robot Navigation, Liveness, Safety, Constrained Environments.

1. Introduction
Large-scale multi-agent robot navigation has recently gained popularity for its applications in many
fields, including warehouse robots, autonomous vehicles, unmanned aerial vehicles, and more (Bogue
(2024); Rasheed et al. (2022)). These systems frequently operate in constrained and cluttered envi-
ronments, such as navigating doorways, intersections, or narrow hallways.

Figure 1: LIVENET enables minimally invasive, robust, safe and
deadlock-free navigation in constrained environments compared
to existing methods.

Such scenarios often lead to con-
flicts, manifesting as deadlocks, col-
lisions, or both, when multiple agents
attempt to occupy the same lim-
ited space simultaneously (Chandra
et al. (2024)). In contrast, humans
navigate these challenges effortlessly
and intuitively, demonstrating agility
and safety by dynamically modulat-
ing their speed and trajectory. This
allows them to avoid collisions (en-
suring safety) and prevent deadlocks
(maintaining liveness—defined as the
ability to continually make progress
toward their goal) while ensuring smooth and efficient transitions. This work investigates a fun-
damental research question: How can robots emulate human-like agility, safety, and liveness in
constrained environments?
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We approach this question by designing a low-level controller capable of simultaneously en-
suring safety and liveness. Achieving only one of these properties is insufficient for replicating
human-like behavior, such as agile yielding. Focusing solely on safety results in overly conservative
behavior, while prioritizing liveness alone can lead to aggressive and potentially unsafe navigation.
While some efforts have attempted to integrate both safety and liveness (Chandra et al. (2024);
Wang et al. (2017); Zhou et al. (2017); Chen et al. (2023); Garg et al. (2024)), these solutions often
perturb the robots in an invasive manner that forces them to adopt suboptimal trajectories. For ex-
ample, (Zhou et al. (2017); Wang et al. (2017)) implement the right-hand-rule to induce clockwise
movement in the event of a deadlock. Furthermore, in prioritizing safety, current methods only
resolve deadlocks after they occur and all agents come to a stop. This is in stark contrast to how hu-
mans navigate by preemptively detecting and preventing the deadlock, without invasive maneuvers
or delays. These issues highlight a critical gap in the literature towards achieving a robust, mini-
mally invasive liveness without sacrificing safety. An optimal algorithm to navigating in constrained
and cluttered spaces, therefore, must satisfy the following criteria:

1. Decentralized / Non-cooperative: The algorithm should not assume that agents can communicate
with one another or with a centralized controller. The robots should only gain information about
their surrounding environment through sensory perception.

2. Robust: Agents must be able to changes in the environment or in their own configurations.
3. Safe: The agents should maintain a predefined safety distance from other agents and obstacles.
4. Live: The agents should avoid deadlocks and continuously make progress towards the goal.
5. Minimally invasive: An optimal strategy should apply the least disruptive intervention using

minimal perturbations to ensure conflict resolution.
6. Dynamically feasible: The agents should follow predefined non-holonomic and kinodynamic

constraints, including bounds on the velocity and acceleration of the agent.

Main Contributions: We propose a novel approach for optimal end-to-end learnable multi-robot
navigation in constrained spaces such as doorways and corridor intersections. The key insight of
our approach is to formulate both safety as well as liveness via differentiable CBFs within the neural
network controller.

• We propose the first safe, robust neural controller with provable liveness guarantees (Theorem (1))
for agile and smooth multi-robot navigation in constrained spaces.

• Unlike prior methods, LIVENET, while still fully decentralized, is minimally invasive, only per-
turbing the speed of a robot by the smallest amount necessary, without changing its direction,
resulting in smoother and more optimal trajectories.

• LIVENET’s control cycle frequency is between 10–20× faster than MPC-based optimization ap-
proaches and 20× faster than MACBF (Qin et al. (2021)), a state of the art end-to-end learning-
based multi-robot navigation baseline.

• LIVENET is robust to changes in the environment and agent configurations. Given a wide range
of diverse environments, LIVENET succeeded in 30% more scenarios compared to MPC-based
baselines.

2. Related Work
In this section we discuss the variety of methods that have been applied to safely navigate multi-
robot deadlock avoidance scenarios.

2.1. Simultaneous Safety and Deadlock Resolution Methods
Most current methods rely on cooperative, predetermined behavior between the robots to resolve
conflicts. For instance, in (Zhou et al. (2017); Wang et al. (2017); Zhu et al. (2022); Chen et al.
(2023)), the authors heuristically define a clockwise movement to establish the right of way (the
rightmost agent moves first). Other deadlock resolution methods generate vehicle priorities through
reservation systems like first come first serve (Au et al. (2015)) or auctions with predefined bidding
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strategies (Carlino et al. (2013); Suriyarachchi et al. (2022)). Garg et al. (Garg et al. (2024)) used
large language models to act as a central arbiter to resolve the conflict. However, these heuristics
result in larger perturbations than necessary to avoid the deadlock, and they often falter in sce-
narios with unpredictable agents where cooperation is not guaranteed. Chandra et al. (Chandra
et al. (2024)) model liveness as a control barrier function (CBF) within a receding-horizon control
scheme, adjusting the agent’s trajectory to avoid collisions and deadlocks in the immediate future.
Although effective in certain settings, these methods lack robustness in new or highly dynamic
scenarios, as they often require extensive hand-tuning for each unique situation.

2.2. Other Multi-Robot Navigation Approaches

Multi-agent path-finding (MAPF) algorithms such as conflict-based search (CBS) and its vari-
ants (Sharon et al. (2015)), M∗ (Stern (2019)), ICTS (Sharon et al. (2013)), and Uniform Cost
Search (Mao et al. (2024), Guo et al. (2024), McNaughton et al. (2011)). Many MAPF tech-
niques yield a globally optimal solution, but require centralized solvers, discretized state spaces,
and low-dimensional observation, state, and action spaces, thereby restricting its use primarily to
simulation or offline as a coarse preprocessing step (Ma (2022)). These assumptions are prohibitive
to most real world robots that possess non-holonomic and kinodynamic constraints. Learning-
based approaches use imitation learning (Hussein et al. (2018); Yan et al. (2022); Daftry et al.
(2017); Qin et al. (2021); Xiao et al. (2023)) and multi-agent reinforcement learning (MARL) (Liu
et al. (2020); Martinez-Gil et al. (2012); Mehr et al. (2023)) to learn a navigation policy using
supervised or unsupervised learning methods. While these methods offer robustness and scalabil-
ity, they model safety as a learned behavior rather than a constraint. Thus, model performance
is constrained to the training and testing datasets and may fail in novel, unobserved conditions.

Symbol Description
Problem formulation (Section 3)

k Number of agents
T Planning horizon
X General continuous state space
XI Set of initial states
Xg Set of final states
xit State of agent i at time t
Ωi Observation set of agent i

Oi : X → Ωi Agent i’s observation function
oit Observation of agent i at time t
Γi Agent i’s trajectory
Γ̃i Agent i’s preferred or desired trajectory
Ψi Agent i’s input control sequence

T : X × U i → X Environment transition dynamics (Equation 1b)
U i Action space for agent i
J i Running cost for agent i (J i

t : X × U i → R)
J i
T Terminal cost at time T

Ci
(
xit
)
⊆ X Convex hull of agent i

Γ
i Agent i’s minimally invasive trajectory

zit ∈ X × Ωi Model input, consisting of xit and oit.
F : X × Ωi → U i network defining agent i’s controller

Technical Approach (Section 4)

bi
(
zit
)
: X × Ωi −→ R Control barrier function (CBFs)
bio, b

i
l

(
zit
)

Obstacle and liveness CBFs
Lfb

i
(
zit
)
, Lgb

i
(
zit
)

Lie derivatives of bi
(
xit
)

w.r.t f and g.
pit, θ

i
t, v

i
t Position, heading, and velocity of agent i

Γ̂i, Ψ̂i State and input controls trajectory dataset
po, pl Penalty values defining the relaxation of the CBFs

Table 1: Summary of notation used in this paper.

Optimization-based methods, par-
ticularly Model Predictive Control
(MPC) with control barrier functions
(CBFs), have been employed to cal-
culate safe trajectories over short fu-
ture horizons (Mestres et al. (2024),
Zhu et al. (2020)). These receding-
horizon control strategies iteratively
solve an optimization problem at
each step, adjusting the agent’s tra-
jectory to avoid collisions in the im-
mediate future. Although effective
in certain settings, these methods
lack robustness in new or highly dy-
namic scenarios, as they often re-
quire extensive hand-tuning for each
unique situation. Another class of
distributed optimization-based meth-
ods uses dynamic game theory to
compute a Nash equilibria for simi-
lar problems that dictates all agents’
trajectories (Wang et al. (2021a,b);
Schwarting et al. (2021); Sun et al.
(2015, 2016); Morimoto and Atkeson
(2003); Fridovich-Keil et al. (2020);
Di and Lamperski (2018)). However,
this requires knowledge of the other agents’ objective functions, their desired trajectories, and their
kinodynamic constraints (Mylvaganam et al. (2017)).

The algorithms described above are able to either guarantee safety, liveness, or robustness to
adapt to new scenarios well, but are unable to do all three. This research builds on foundational ideas
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of Neural Network based controllers and Control Barrier Functions (CBFs) (Wang et al. (2017)) to
provide safety and liveness while being robust.

3. Problem Formulation
In this section, we formulate the problem objective that we aim to solve. Notation for variables
referenced is summarized in table 1. We formulate the problem as the following partially observable
stochastic game (POSG) (Hansen et al. (2004)): ⟨k, T,X ,U i, T ,J i,Oi,Ωi⟩, where k refers to the
number of agents, and T refers to the finite horizon length of the game. A superscript of i refers to
the ith agent, where i ∈ [1, .., k] and a subscript of t refers to discrete time step t where t ∈ [1, .., T ].
At any given time step t, agent i has state xi

t ∈ X where X is the general, continuous state space.
U i is the continuous control space for robot i representing the set of admissible inputs for i. Agent
dynamics are defined by the transition function T : X × U i → X at time t ∈ [1, .., T − 1]. The
cost function, J i : X × U i → R is used to determine the cost of the specified control action in the
agent’s current state, and the terminal cost J i

T : X → R is used to calculate the cost of the terminal
state xi

N . Each agent i also has an observation oit ∈ Ωi which is determined via the observation
function oit = Oi(xit). A discrete trajectory of agent i is defined by Γi = (xi

0,x
i
1, ...,x

i
T ), and

has a corresponding control input sequence Ψi = (ui0, ..., u
i
T−1). Agents follow the control-affine

dynamics xi
t+1 = f(xi

t) + g(xi
t, u

i
t), where f, g are locally Lipschitz continuous functions. At any

time t, each agent i occupies a space given by Ci(xi
t) ⊆ X . Two robots i, j are considered colliding

at time t if Ci(xi
t) ∩ Cj(xj

t ) ̸= ∅.
A Social Mini-Game (SMG) is a variation of the generic POSG where each agent has a starting

state, xi
0 ∈ XI and a goal state xi

g ∈ Xg where XI and Xg are subsets of the continuous space X
(Chandra et al. (2024)). Additionally, each agent has a preferred trajectory, denoted by Γ̃i, which
would be the desired trajectory that the agent would take in the absence of any other agents:(

Γ̃i, Ψ̃i
)
=arg min

(Γi,Ψi)

T−1∑
t=0

J i
(
xi
t, u

i
t

)
+ J i

T

(
xi
T

)
(1a)

s.t xi
t+1 =f

(
xi
t

)
+ g

(
xi
t

)
ui
t, ∀t ∈ [1;T − 1] (1b)

umin ≤ ui
t ≤ umax (1c)

xi
0 ∈ XI , xi

T ∈ Xg (1d)

(a) SMG Scenario (b) Non-SMG Scenario

Figure 2: Example SMG and Non-SMG scenarios
with agent 1’s desired trajectory in red and agent 2’s
desired trajectory in blue. Their starting and goal
locations are indicated by t = 1 and t = 4, re-
spectively, with t being used to show the agents’
time-parameterized desired trajectories. Collisions are
shown in purple.

A game is considered a social mini-game
when if for some t ∈ [1, .., T ], there exists
at least one pair i, j where i ̸= j such that
Ci(xi

t) ∩ Cj(xj
t ) ̸= ∅ where xi

t ∈ Γ̃i and
xj
t ∈ Γ̃j . As shown in Figure 2, if any two

agents’ desired spatiotemporal trajectories in-
tersect, even by a small amount, the game is
considered an SMG, which results in either a
collision or a deadlock (Chandra et al. (2024)).
To prevent collisions and deadlocks in an SMG,
agents i and j need to perturb their desired tra-
jectories, Γi and Γj , to avoid collisions. That is,
we desire Γi,Γj such that Ci(xi

t)∩Cj(xj
t ) = ∅

for all t ∈ [1;T ] where xi
t ∈ Γi and xj

t ∈ Γj .
Objective: Our goal is to prevent both colli-
sions and deadlocks in an SMG by perturbing
the preferred trajectory, Γ̃i, in a minimally invasive manner. We define the new trajectory, Γi to
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be minimally invasive if it perturbs the agent’s velocity throughout the trajectory by the minimal
amount possible without any spatial deviation from the preferred trajectory and avoids collisions
with all other agents while following kinodynamic constraints. This mimics human yielding when
crossing an intersection or passing through a doorway, where humans simply slow down to allow
someone else to pass, but don’t change their intended spatial path. Mathematically, this means that
over the planning time-horizon T , the following constraints must be incorporated into Problem (1).

T−1∑
t=0

D(pit, Γ̃) ≤ ϵ(1),

T−1∑
t=1

(vit − vit−1) ≤ ϵ(2), Ci(xi
t) ∩ Cj(xj

t ) = ∅ (2)

for all i, j ∈ [0, k] s.t. i ̸= j where D(pit, Γ̃) represents the spatial deviation of point pi from
the desired trajectory Γ̃. Formally, our goal is now to solve Problem (1) with added constraints give
by (2). We define a minimally invasive solution as one that minimizes the value of ϵ(1), and the
event of a tie minimizes ϵ(2).

4. LIVENET: Technical Approach

Figure 3: LIVENET Architecture Overview The ego state and obser-
vation inputs get fed into a feedforward network with three individual
outputs: the reference control, the obstacle penalties, and the mini-
mal invasiveness penalties. These three outputs get fed into a differ-
entiable QP layer which solves a standard QP problem with inequality
constraints (Equations (4) and (10)) to enforce the CBFs. During back-
propagation, the optimal reference value, as well as optimal penalty
values for the CBF constraints, are learned.

Each LIVENET agent is defined
by a neural network, where the
function F : X × Ωi → U i

defines the feed-forward func-
tion of the model. The input to
the network is the agent’s state
and observation, namely zit =
(xi

t, o
i
t). The cost function for

the model is defined via a mean-
squared-error loss function such
that J i = 1

T

∑T
t=0(F (ẑit)−ûit)

2

for all corresponding (ẑi, ûit)

in a trajectory dataset (Γ̂i, Ψ̂i).
The LIVENET network (visual-
ized in Figure 3) takes in the
agent’s state and observation as
inputs, and passes it through
three subnetworks, Fr, Fo, and
Fl, which generate the reference
control output uref , along with
penalty values for the obstacle
barrier function, po and the live-
ness barrier function, pl. po de-
termines the level of relaxation
on the obstacle CBF (4.1) and
pl determines the level of relax-
ation on the liveness CBF (4.2).
The network subsequently feeds
these variables into a quadratic programming (QP) layer (Amos and Kolter (2017)) to maximize
the function (u − uref )

2 given differential CBF (dCBF) constraints defined by po and pl. During
backpropagation, the mean squared error loss between the outputted u and the optimal û (provided
via the training dataset) is used to optimize the weights in the networks Fr, Fo, and Fl via gradient
descent.

The OptNet framework (Amos and Kolter (2017)) that LIVENET is built on allows QP prob-
lems to be passed in with generalized inequality constraints in the form G(z)u ≤ h(z). Sections
4.1 and 4.2 discuss the usage of Higher-Order CBFs (HOCBFs) in order to construct barrier func-
tion inequalities that are dependent on the control inputs. We refer the reader to [Xiao and Belta
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(2019)] for more details. Our approach presents both a multi-agent differential CBF (dCBF) layer
for multi-dimensional state spaces, as well as a liveness dCBF filter to ensure deadlock avoidance
in a minimally invasive manner.

4.1. Multi-Agent Collision Avoidance dCBFs
We present an environment setup with double-integrator unicycle dynamics and a state space defined
by (x, y, θ, v) ∈ X where x and y represent the 2D position of the robot, θ represents the heading,
and v represents the forward velocity. The control inputs are defined by (ω, a) ∈ U i where ω
represents turning velocity and a represents linear acceleration. Observations of agent i includes
the positions, headings, and velocities of other, as well as the positions of static obstacles. We also
refer to both agents and static obstacles under the general term obstacles for this subsection, as
agents are treated as moving obstacles whom we have no control over, where we utilize forwards
dynamics to derive their future position based on their current velocity and heading. For any static
obstacle j, we set θj = 0 and vj = 0. for static obstacles. Thus, from agent i’s perspective, the
transition dynamics are defined as:

ẋ =

[
f i(xi)
f j(xj)

]
+

[
B 0
0 0

] [
ui

uj

]
, (3)

where ż =
[
ẋi, ẏi, θ̇i, v̇i, ẋj , ẏj , θ̇j , v̇j

]⊤
. The control inputs are applied using an input matrix,

B, where B = [0, 0, 1, 0; 0, 0, 0, 1]⊤, and the control vectors for agents i and j are ui =
[
ωi, ai

]⊤
and uj =

[
ωj , aj

]⊤, respectively. The dynamics for each agent are represented by f i(xi) and

f j(xj), where f i(xi) =
[
vi cos(θi), vi sin(θi), 0, 0

]⊤. For simplicity, agents and static obstacles are
considered to occupy circles of their respective radius r. The barrier function for obstacle avoidance
can be written out as b(z) = (xi − xj)2 + (yi − yj)2 − (ri + rj)2 >= 0 where (xj , yj) ∈ R2

represents the position of obstacle j, and rj represents the radius of obstacle j. As shown in (Xiao
et al. (2023)), the HOCBF for b(z) which has degree 2 with respect to the control outputs yields the
following inequality:

−LfLgb(z)u ≤ L2
fb(z) + (po1(z) + po2(z))Lfb(z) + (ṗo1(z) + po1(z)p

o
2(z))b(z) (4)

where po1(z) and po2(z) are trainable penalty functions, and ṗo1(z) is set to 0. Given that b(z) =
(xi − xj)2 + (yi − yj)2 − (ri + rj)2, we can solve for the Lie derivatives of b(z) in the f(x) and
g(x) vector fields:

Lfb(z) = 2(xi − xj)(vi cos(θi)− vj cos(θj)) + 2(yi − yj)(vi sin(θi)− vj sin(θj)) (5a)

L2
fb(z) = 2(vi

2
+ vj

2 − 2vivj(cos(θi + θj)) (5b)

LgLfb(z) =

[
−2(xi − xj)vi sin(θi) + 2(yi − yj)vi cos(θi)

2(xi − xj) cos(θi) + 2(yi − yj) sin(θi)

]T
(5c)

These values, plugged into Equation (4), generate our differential CBF constraint.

4.2. Minimally Invasive Deadlock Prevention dCBFs
We introduce a minimally invasive differential CBF layer to look ahead and output accelerations
that avoid collisions and maintain liveness in SMG scenarios. We first check if agent i’s projected
spatial path intersects with the projected spatial path of any other agent j for all j in [1; k] s.t. i ̸= j,
assuming that agent j maintains their heading (θj) and velocity (vj). This check boils down to a ray
intersection, which is calculated as a and b

a = (∆y ∗ cos(θi)−∆x ∗ sin(θi)) ∗ det, b = (∆y ∗ cos(θj)−∆x ∗ sin(θj)) ∗ det (6)
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where det = v̂jx ∗ v̂iy − v̂jy ∗ v̂ix and v̂i = vi

|vi| , v̂
j = vj

|vj | . The rays intersect if a and b are
both greater than 0. The minimally invasive liveness filter is only applied if the rays intersect. Let
p̃i ∈ Ci be the closest point on agent i’s convex hull to agent i. Similarly, let p̃j ∈ Cj be the closest
point on agent j’s convex hull to agent i. We denote p̃i and p̃j to be the agents’ critical points.
Assuming that the agents have not yet collided, these points lie on the boundaries of their respective
agent’s convex hull, and thus are ri and rj from the agents’ current positions. Mathematically,

pi
∗
= pi + ri ∗ p̂j−i, pj

∗
= pj − rj ∗ p̂j−i (7)

where p̂j−i = pj−pi

|pj−pi| . Thus, our problem reduces to avoiding a point-point collision instead of a
convex-convex collision. We first calculate c, the potential collision point of p̃i and p̃j , by projecting
them forwards along the agents’ current spatial path given θ and v:

p̃i
′
= p̃i + vi, p̃j

′
= p̃j + vj

ai = x̃i ∗ ỹi
′
− ỹi ∗ x̃i′ , aj = x̃j ∗ ỹj

′
− ỹj ∗ x̃j′

cx = (ajvi cos(θi)− aivj cos(θj))/det, cy = (ajvi sin(θi)− aivj sin(θj))/det
(8)

where det = vivj(cos(θi) sin(θj) − sin(θi) cos(θj)). We then calculate the distance from each
agent’s critical point p̃ to the collision point.

di =
√
(x̃i − cx)2 + (ỹi − cy)2, dj =

√
(x̃j − cx)2 + (ỹj − cy)2 (9)

Given each agent’s velocity, we calculate ti and tj , the time for each agent’s critical point, p̃, to
reach the collision point c as t = v/d. We split the scenario into two different cases. If ti < tj ,
then that indicates that the ego agent, agent i, will pass the collision point before agent j. In this
scenario, we enforce the barrier function tj > ti → b(z) = tj − ti = dj

vj
− di

vi
≥ 0. Since the c

lies along each agent’s heading, θ, and since a minimally invasive trajectory involves zero spatial
deviation from the desired path, v is the direct derivative of d. That is, dd/dt = v. Since our barrier
function is with respect to vi, and the control input ai appears in the first derivative of our barrier
function, we alter the HOCBF inequality from Equation (4) to instead be

−Lgb(z)u ≤ Lfb(z) + plb(z) (10)

Thus, we compute the Lie derivatives and formulate the CBF in Equation 11.

b(z) = δ(tj − ti), Lgb(z) = δ

(
aidi

vi
2

)
, −δ

(
aidi

vi
2

)
≤ plδ(x)

(
dj

vj
− di

vi

)
(11)

where δ(·) is an indicator function and is equal to 1 if the ego-agent is faster and −1 if it is
slower and should yield to agent j. Note that there is no Lie derivative along the f function since in
the absence of any control outputs, the barrier function tj−ti would remain constant over time. The
penalty value, plδ(z) is chosen for these CBFs to allow the network to learn the necessary constraint
levels in each scenario.

Theorem 1 Assuming pl−1(z), p
l
1(z) are differentiable functions with respect to z, then the LIVENET

constraints in Equation (11) guarantee the liveness of the system defined by (3).

Proof The proof follows directly from (Xiao et al. (2023))(c.f. Theorem 2) and relies on the
requirement that the relative degree of pl−1(z), p

l
1(z) with respect to each component in z is greater

than or equal to that of the liveness constraints in Equations (11).
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Doorway Scenario
Method # Collisions # Deadlocks Makespan (s) ∆V (m/s) ∆ Path (m) Cycle Time (s)

MPC-CBF (Zeng et al. (2021)) 0 50 N/A 0.003± 0.000 0.016± 0.000 90.9± 0.9
MACBF (Qin et al. (2021)) 50 0 N/A 0.006± 0.000 0.149± 0.048 171.05± 1.66

PIC (Liu et al. (2020)) 50 0 N/A 0.031± 0.006 0.041± 0.002 0.3± 0.0
BarrierNet (Xiao et al. (2023)) 50 0 N/A 0.004± 0.000 0.010± 0.002 7.3± 0.0

SMG-CBF (Chandra et al. (2024)) 0 0 13.8± 0.0 0.009± 0.000 0.001± 0.000 81.1± 0.3

LIVENET 0 0 13.8± 0.0 0.002± 0.000 0.008± 0.000 7.5± 0.0

Intersection Scenario

MPC-CBF (Zeng et al. (2021)) 0 50 N/A 0.006± 0.000 0.170± 0.001 302.6± 3.9
MACBF (Qin et al. (2021)) 50 0 N/A 0.300± 0.002 0.009± 0.004 170.8± 1.6

PIC (Liu et al. (2020)) 50 0 N/A 0.081± 0.024 0.033± 0.003 0.3± 0.0
BarrierNet (Xiao et al. (2023)) 50 0 N/A 0.008± 0.000 0.033± 0.001 7.3± 0.0

SMG-CBF (Chandra et al. (2024)) 0 0 12.2± 0.0 0.012± 0.000 0.000± 0.000 157.0± 0.5

LIVENET 0 0 11.6± 0.0 0.011± 0.000 0.000± 0.000 9.3± 0.1

Table 2: Experiment results in the Doorway and Intersection scenarios, averaged over 50 runs.
In Equations (11), since the control input (ai) appears in the first derivative, the relative degree is

1. Next, recall that each agent i has a partial observability over the positions and velocities of other
robots in its neighborhood, that is, z = [pi, vi, pj , vj ]. The penalty functions pl−1(z), p

l
1(z) have a

relative degree of 2 with respect to position and 1 with respect to velocity, therefore, the conditions
set forth in (Xiao et al. (2023)) are satisfied.

5. Experiments and Results
We aim to investigate two main questions: (i) how does LIVENET compare with existing multi-
robot navigation methods in SMGs? and (ii) how does LIVENET compare with methods specif-
ically designed to navigate SMGs? To investigate these questions, we compare LIVENET to five
baseline methods. These baselines include two receding-horizon optimization-based controllers,
MPC-CBF (Zeng et al. (2021)), which maintains safety from static and moving obstacles using
CBFs and SMG-CBF (Chandra et al. (2024)), an extension of the MPC-CBF formulation that
employs a threshold-based liveness CBF with steep acceleration outputs. Two multi-agent learning-
based approaches were also tested: MACBF (Qin et al. (2021)), a neural network controller that
learns safety through separated action and CBF networks, and PIC (Liu et al. (2020)), which uti-
lizes graph convolutional neural networks with a permutation invariant critic for scalable navigation.
LIVENET was additionally tested against BarrierNet (Xiao et al. (2023)), which also employs a dif-
ferentiable CBF layer, but lacks incentives to follow live behavior. We track standard navigation
metrics, namely number of collisions and deadlocks, makespan (time to goal for the slower agent),
and runtime per control iteration (in seconds) in a variety scenarios. To evaluate minimal invasive-
ness (or smoothness) between the different approaches, we measure average change in velocity and
the average path deviation from the agent’s desired trajectory.

5.1. Experiment Setup
The simulation environment was setup in Python using the do mpc framework package (Lucia
et al. (2017)), which is based on Casadi (Andersson et al. (2019)). The kindoynamic constraints
remained constant across all scenarios, with a maximum velocity of v = 0.3 m/s, a maximum
acceleration / deceleration of a = 0.1 m/s2, and a maximum angular velocity of ω = 0.5 rad/s.
Agent radii of 0.1 m, simulation step time of 0.2 s/iteration and simulation time of 18s were
also maintained constant across all experiments. The following symmetric SMGs were tested: (i)
Doorway scenario: multiple robots pass through a doorway with width 0.3m, only large enough
for one robot to fit at a time. The agents started at maximum velocity (0.3m), 2m to the left of the
doorway and 0.5m north / south of it. Intersection scenario: multiple robots cross an intersection
that is 0.35m× 0.35m, allowing only one robot to pass at a time. The robots started 1m away from
the intersection with their goal placed 1m past the intersection.
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(a) MPC-CBF (b) SMG-CBF (c) MACBF (d) PIC (e) BarrierNet (f ) LIVENET

(g) MPC-CBF (h) SMG-CBF (i) MACBF (j) PIC (k) BarrierNet (l) LIVENET

Figure 4: Resulting trajectories in Doorway (Figures 4(a)-4(f )) and Intersection (Figures 4(g)-4(l))

(a) Distance CBF (po) (b) Liveness CBF
(
pl
)

(c) Average ∆ Path

Figure 5: LIVENET’s obstacle dCBF, liveness dCBF, and deviation from desired path in Doorway scenario.
Training: To train LIVENET, we generated data using an optimal, receding-horizon MPC con-
troller (Zeng et al. (2021)) across various perturbations of the doorway and intersection scenarios.
We optimized the MPC agent to create minimally invasive solutions that avoid deadlocks and col-
lisions using the barrier functions defined in Equations 5a and 11. For each scenario, defining
parameters such as starting state, goal state, and gap size were slightly perturbed to generate a data
suite containing variations of the original scenario, thereby increasing the diversity and quantity of
training data. For each scenario perturbation, the MPC’s state and input cost matrices, as well as
the CBF parameters (Zeng et al. (2021)), were individually tuned to generate an optimal trajectory
for that scenario. LIVENET was subsequently trained on this augmented data through offline super-
vised learning, using mean squared error as the loss function. The LIVENET network consists of
single, linear layer with 256 nodes followed by three parallel linear layers, Fr, Fo, Fl, each with 64
nodes. We use ReLU as the activation function between layers. The training process spanned 30
epochs of shuffled data, with a batch size of 64 and a learning rate of 0.001.

Baseline learning methods (Figure 2) were trained within their native training loops and environ-
ments. These methods were subsequently adapted to the SMG environment described in Section 5.1
through custom state-action mapping interfaces to ensure environment consistency.

5.2. Results
For each agent, 50 Doorway and Intersection scenarios were run to test the safety, liveness, and
smoothness of the trajectories of each agent. The accumulated and averaged metric values are
displayed in Table 2 and the resulting trajectories are shown in Figure 4. The MACBF, PIC, and
BarrierNet models resulted in collisions due to mere soft constraints on safety with the limited train-
ing data. The MPC-CBF model was able to avoid collisions, but succumbed to deadlocks due to
an inability to make safe progress. Additionally, LIVENET performed minimally invasive behavior
as it maintained its desired spatial trajectory and minimally perturbed its velocity, approaching the
CBF threshold without ever violating it (Figure 5).
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Of the baselines, only SMG-CBF was successful due to its deadlock resolution capabilities.
SMG-CBF, however, is 10× slower than LIVENET as it runs an iterative optimization algorithm
every control cycle. Additionally, as shown in the Doorway scenario results, SMG-CBF was sig-
nificantly more invasive, with an average velocity perturbation of 4–5× that of LIVENET. Another
core limitation with SMG-CBF is its dependence on a liveness threshold to determine when to
apply the CBF (Chandra et al. (2024)). As the controller enters and exits this threshold, its accel-
eration output varies significantly, thus producing jagged controls as shown in Figure 6(b) between
iterations 10 and 40. On the other hand, LIVENET’s ability to learn how much to relax the CBF
as a function of the agent’s state and observation allows the velocity profile of the resultant path to
be much smoother as demonstrated by the smoother dip in agent 2’s velocity in Figure 6(a), which
more closely mimics human-like behavior. Figure 6 further shows evidence of better human-like
yielding for LIVENET. In particular, note that agent 2 does not begin to yield until the last second
(around iteration 20) compared to SMG-CBF where agent 2 begins to slow around iteration 10,
suggesting that LIVENET results in less conservative, more agile navigation.

LIVENET is also more robust to variations in the environment and agent configurations thanSMG-
CBF. We tested both on a suite of 28 perturbed scenarios of the original doorway SMG without any
changes to their parameter configuration. The perturbations were created by variations in the agents’
initial position, initial heading, initial velocity, and goal position. The positions were altered on a
scale of 0.5m, initial headings facing the doorway and facing the wall were tested, and the initial
velocity was either full speed (0.3m/s) or standstill (0.0m/s). LIVENET was able to solve 25 /
28 scenarios without a deadlock or collision, whereas SMG-CBF was only able to solve 16 / 28.

(a) LIVENET (b) SMG-CBF

Figure 6: Comparing agents’ (A1, A2) velocities generated by
LIVENET and SMG-CBF, before and after crossing the doorway.

It should also be noted that due
to SMG-CBF’s deterministic man-
ner, it is unable to solve perfectly
symmetrical cases without predefin-
ing which agent should start off mov-
ing faster. On the other hand, the
same LIVENET network could be
used for both agents, as it has a slight
inherent bias based on its starting and
goal positions, allowing it to break
the symmetry. SMG-CBF’s lack of
robustness is due to constant parame-
ters defining how strictly the CBF is
followed for each scenario. On the other hand, LIVENET’s ability to predict the penalty values,
p(z), that define the relaxation of the CBF allows it to better adapt to a multitude of scenarios.

6. Conclusion
In this work, we presented LIVENET, a robust, minimally-invasive neural network controller that
uses differentiable CBF layers to tackle the safety and liveness challenges of constrained environ-
ments. Our navigation approach utilized the BarrierNet framework as the base neural network. We
introduced novel differentiable CBF layers to provide liveness and 2D multi-agent navigation. To
train the network, we hand-tuned an optimal recending-horizon controller over many perturbed sce-
narios to generate a large dataset. Our approach guarantees safe and live behavior given enough
training data and iterations to learn the dCBF’s corresponding penalty values. Experiments show
that in practical scenarios the model outperforms existing solutions in safety, minimal invasiveness,
compute speed, and robustness. The faster compute time and robustness are crucial when run on
real robots in constrained areas that need to react quickly to unpredictable situations.

Our approach has some limitations. LIVENET is currently tested in simulation, and we plan
to deploy in the real world in the future. Additionally, LIVENET has only been tested on 2-agent
scenarios. We plan on investigating the scalability of this model in terms of the compute time
and accuracy as the number of agents increases. Furthermore, an issue with imitation learning is
a laborious data generation process, as we have to tune the optimal controller for each scenario
perturbation. Utilizing unsupervised learning methods would allow for self-exploration of novel
states instead of forcing the agent to only learn from states that the optimal controller explored.
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